Chapter 4: Abdomen
Vasculature of Abdomen

I. Vasculature of Abdomen
 A. Overview
 • The vasculature of the abdomen is focused around the paired and unpaired branching vessels off of the descending aorta
 • The aorta is located retroperitoneal, left of the midline vertebral bodies and provides blood to all abdominal and pelvic structures
 • The venous system is unique in that it drains blood directly to the liver for detoxification and nutrient processing rather than to the IVC/heart

II. Aorta
 A. Overview
 • The aorta is the largest blood vessel in the human body that provides freshly oxygenated blood to the body. The aorta has four sections: 1) ascending, 2) arch, 3) descending and 4) abdominal aorta.
 – For the purposes of the abdomen, the fourth section is most relevant
 • It enters the abdominal cavity through the diaphragm at the T12 vertebra and terminates at L4 as the common iliac arteries
 • There are five paired branches and four unpaired branches. The branches from superior to inferior consist of:
 – Inferior phrenic arteries
 – Celiac trunk
 – Superior Mesenteric Artery (SMA)
 – Middle suprarenal arteries
 – Renal arteries
 – Gonadal arteries
 – Inferior Mesenteric Artery (IMA)
 – Median sacral artery
 – Lumbar arteries

Figure 4.1: Anterior View of the Abdominal Aorta

III. Branched Arteries
 A. Inferior Phrenic Arteries
 • Provide blood to the inferior diaphragm
 B. Middle Suprarenal Arteries
 • Provide blood to the adrenal glands
 C. Renal Arteries
 • Provide blood to the kidneys
D. Gonadal Arteries
 • Provide blood to the testes and ovaries

E. Lumbar Arteries
 • Four paired arteries that branch bilaterally to provide blood to the abdominal wall and spinal cord
 (Great Radicular Artery of Adamkiewicz)

IV. Unpaired Arteries
A. Celiac Trunk
 • Large branched vessel that provides dominant blood supply to the liver, spleen, stomach, duodenum, pancreas and lower esophagus

B. Superior Mesenteric Artery (SMA)
 • Large branched vessel that provides blood to the lower duodenum, pancreas, jejunum, ileum, appendix, cecum, ascending colon and proximal transverse colon

C. Inferior Mesenteric Artery (IMA)
 • Large branched vessel that provides blood to the distal transverse colon, descending colon, sigmoid colon and upper rectum

D. Median Sacral Artery
 • Small branched vessel that arises posteriorly off of the aorta to provide blood to the lumbar, sacral and coccygeal vertebrae

V. Celiac Trunk
A. Overview
 • Second branch and first unpaired vessel off of the aorta at the level of T12. The celiac trunk is crucial for the support of all upper abdominal organs and foregut.
 • Splits immediately into three branches:
 – Left gastric artery
 – Splenic artery
 – Common hepatic artery

B. Branches
 • Left Gastric Artery
 – Provides blood to the lower esophagus, then continues to provide blood to the lesser curvature of the stomach
 – Forms an anastomosis with the right gastric artery
 • Splenic Artery
 – Tortuous blood vessel that runs posterior to the stomach and provides blood to the spleen
 – Numerous branches including left gastroepiploic, short gastric and pancreatic arteries
 • Common Hepatic Artery
 – Dominant arterial blood supply to the liver
Abdomen

VI. Superior Mesenteric Artery (SMA)

A. Overview
- Second unpaired artery off of the aorta at the level of L1
- Provides blood to the midgut, the inferior portion of the pancreas, distal duodenum, small bowels, ascending colon and hepatic flexure of transverse colon territory
- The stomach, splenic vein and neck of pancreas run anterior to the SMA while the left renal vein, inferior duodenum and uncinate process of the pancreas run posteriorly

B. Branches
- Inferior Pancreaticoduodenal Artery
 - Branches into anterior and posterior segments that anastomose with the superior pancreaticoduodenal artery
- Middle Colic Artery
 - Supplies the transverse colon and forms an anastomosis with the IMA via the artery of Drummond
- Right Colic Artery
 - Supplies the ascending colon
- Ileoceleic Artery
 - Last branch of the SMA and provides blood to the ascending colon, cecum and appendix
- Appendicular Artery
 - Branch of ileocecal artery and provides blood to the appendix
- Jejunal and Ileal Arteries
 - Multiple branches that form proximal arcades, then vasa recta before entering the organs
 - The arcades and vasa recta are confined within the mesentery, are not easily dissected, but their architecture helps distinguish the jejunum from ileum
 - Jejunal arteries = fewer arcades, longer vasa recta
 - Ileal arteries = more arcades, shorter vasa recta
VII. Inferior Mesenteric Artery (IMA)

A. Overview
- Third unpaired artery off of the aorta at the level of L3
- Provides blood to the hindgut, the splenic flexure of the transverse colon, descending colon, sigmoid and upper rectum

B. Branches
- Left Colic Artery
 - Branches into the ascending and descending divisions
 - Provides blood to the distal \(\frac{2}{3} \) of the transverse colon and descending colon
 - Ascending branch forms an anastomosis with the marginal artery of Drummond, and the descending branch forms an anastomosis with the sigmoid artery
- Sigmoid Artery
 - Provides blood to the descending colon, sigmoid colon and runs anterior to the psoas major, left internal spermatic vessels and ureter
- Superior Rectal Artery
 - Descending branch of the IMA that provides blood to the upper rectum
 - Combines with the middle and inferior rectal arteries off of the internal iliac artery to complete blood supply to the rectum

VIII. Portal Venous System

A. Overview
- The IVC is present in the retroperitoneal space, but does not directly drain the abdominal viscera
- The IVC bifurcates at L5 and drains the common iliac veins
- The portal venous system of venous drainage directs blood from the abdominal organs to the liver
- The body uses this system to help detoxify material that the intestines absorb as well as help the liver process nutrients and fat
- Receives GI blood from the stomach to the anal canal, spleen, pancreas and gallbladder
- Connects back with the systemic system via the hepatic veins in the distal IVC before it enters the right atrium

B. Portocaval Connections
- Vascular connections in which the blood from the portal system communicates with the blood from the systemic system
 - During periods of portal congestion/hypertension, blood can be rerouted and flow retrogradely through these connections
C. Gonadal Vein Drainage
 - Neither gonadal vessels arterial nor venous supply communicates with the portal venous system
 - Left gonadal vein connects to the renal vein (at a 90° angle)
 - Right gonadal vein connects directly to the IVC

IX. Clinical Pearls
A. Celiac Compression Syndrome
 - The median arcuate ligament of the diaphragm may have a variant origination that occludes the celiac trunk
 - Presentation: asymptomatic, nausea, vomiting, diffuse abdominal pain or postprandial abdominal pain from decreased intestinal perfusion

B. SMA Compression Syndrome
 - SMA is anterior to the inferior portion of the duodenum
 - In normal patients, there is a fat pad that keeps these structures separate
 - In elderly, emaciated or anorexic/bulimic patients when the fat is decreased or in acutely branching SMAs, compression of the duodenum occurs
 - Presentation: postprandial pain, nausea and abdominal discomfort

C. Portal Venous Congestion/Portal Hypertension
 - Portal venous congestion can result from hepatic or venous pathology that compromises blood flow from the portal system to the caval system
 - Dilation of portocaval connections cause varices
 - Esophageal varices
 - Caput Medusae (paraumbilical veins)
 - Internal Hemorrhoids
 - Most commonly from cirrhosis and other hepatic dysfunction including malignancies, hepatitis, autoimmune disorders (e.g. SLE), Budd-Chiari Syndrome (thrombosis of hepatic veins) and vascular hypercoagulable states (e.g. Factor V Leiden)
 - Aside from aforementioned varices, other clinical presentations associated with portal venous congestion and hepatic dysfunction include: coagulopathy, jaundice, testicular atrophy, gynecomastia, ascites, asterixis and encephalopathy

D. Nutcracker Syndrome
 - Occurs when the left renal vein is compressed between the overlying SMA and the underlying abdominal aorta
 - Presentation is variable but can cause hematuria, engorgement of the left gonadal vein/varicocele, nausea and vomiting